wavelength tuning - significado y definición. Qué es wavelength tuning
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es wavelength tuning - definición

PHYSICAL QUANTITY OF IDEAL AND QUANTUM GASES
Thermal wavelength; Thermal De Broglie Wavelength

Wavelength (magazine)         
GROUPING OF SURFING MAGAZINES
Wavelength Magazine
Multiple publications exist under the name Wavelength Magazine. 'Wavelength' is a worldwide surfing magazine published by WL Media, based in Newquay, Cornwall.
William Tuning         
AMERICAN WRITER (1935-1982)
Tuning, William
Orville William Tuning (June 21, 1935 in Ottumwa, Iowa – April 18, 1982 in Santa Barbara, California) was an American author of science fiction and a member of the Society for Creative Anachronism] (SCA). He was reported to be close friends with authors [[Jerry Pournelle, Randall Garrett (SCA name: Randall of Hightower) and Robert A.
Self-tuning         
A SYSTEM'S CAPABILITY OF OPTIMIZING ITS OWN INTERNAL RUNNING PARAMETERS
Auto-tuning
In control theory a self-tuning system is capable of optimizing its own internal running parameters in order to maximize or minimize the fulfilment of an objective function; typically the maximization of efficiency or error minimization.

Wikipedia

Thermal de Broglie wavelength

In physics, the thermal de Broglie wavelength ( λ t h {\displaystyle \lambda _{\mathrm {th} }} , sometimes also denoted by Λ {\displaystyle \Lambda } ) is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature. We can take the average interparticle spacing in the gas to be approximately (V/N)1/3 where V is the volume and N is the number of particles. When the thermal de Broglie wavelength is much smaller than the interparticle distance, the gas can be considered to be a classical or Maxwell–Boltzmann gas. On the other hand, when the thermal de Broglie wavelength is on the order of or larger than the interparticle distance, quantum effects will dominate and the gas must be treated as a Fermi gas or a Bose gas, depending on the nature of the gas particles. The critical temperature is the transition point between these two regimes, and at this critical temperature, the thermal wavelength will be approximately equal to the interparticle distance. That is, the quantum nature of the gas will be evident for

i.e., when the interparticle distance is less than the thermal de Broglie wavelength; in this case the gas will obey Bose–Einstein statistics or Fermi–Dirac statistics, whichever is appropriate. This is for example the case for electrons in a typical metal at T = 300 K, where the electron gas obeys Fermi–Dirac statistics, or in a Bose–Einstein condensate. On the other hand, for

i.e., when the interparticle distance is much larger than the thermal de Broglie wavelength, the gas will obey Maxwell–Boltzmann statistics. Such is the case for molecular or atomic gases at room temperature, and for thermal neutrons produced by a neutron source.